Back to Search
Start Over
Phonon dynamics in the layered negative thermal expansion compounds CuxNi2−x(CN)4
- Source :
- Physical Review B. 100
- Publication Year :
- 2019
- Publisher :
- American Physical Society (APS), 2019.
-
Abstract
- This study explores the relationship between phonon dynamics and negative thermal expansion (NTE) in CuxNi2-x¬(CN)4. The partial replacement of nickel (II) by copper (II) in Ni(CN)2 leads to a line phase, CuNi(CN)4 (x = 1), and a solid solution, CuxNi2-x¬(CN)4 (0 ≤ x ≤ 0.5). CuNi(CN)4 adopts a layered structure related to that of Ni(CN)2¬ (x = 0), and interestingly exhibits 2D NTE which is ~ 1.5 times larger. Inelastic neutron scattering (INS) measurements combined with first principles lattice dynamical calculations provide insights into the effect of Cu2+ on the underlying mechanisms behind the anomalous thermal behavior in all the CuxNi2-x¬(CN)4 compounds. The solid solutions are presently reported to also show 2D NTE. The INS results highlight that as the Cu2+ content increases in CuxNi2-x(CN)4, large shifts to lower energies are observed in modes consisting of localized in- and out-of-plane librational motions of the CN ligand, which contribute to the NTE in CuNi(CN)4. Mode Gruneisen parameters calculated for CuNi(CN)4 show that acoustic and low-energy optic modes contribute the most to the NTE, as previously shown in Ni(CN)2. However, mode eigenvectors reveal a large deformation of the [CuN4] units compared to the [NiC4] units, resulting in phonon modes not found in Ni(CN)2, whose NTE-driving phonons consist predominately of rigid-unit modes. The deformations in CuNi(CN)4 arise because the d9 square-planar center is easier to deform than the d8 one, resulting in a greater range of out-of-plane motions for the adjoining ligands.
- Subjects :
- Materials science
Phonon
Ligand
chemistry.chemical_element
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
Copper
Inelastic neutron scattering
Crystallography
Nickel
chemistry
Negative thermal expansion
Lattice (order)
0103 physical sciences
010306 general physics
0210 nano-technology
Solid solution
Subjects
Details
- ISSN :
- 24699969 and 24699950
- Volume :
- 100
- Database :
- OpenAIRE
- Journal :
- Physical Review B
- Accession number :
- edsair.doi...........1ab63e27fd3a1d1b78c28db0e5aee991
- Full Text :
- https://doi.org/10.1103/physrevb.100.094312