Back to Search
Start Over
Kontsevich’s integral for the Kauffman polynomial
- Source :
- Nagoya Mathematical Journal. 142:39-65
- Publication Year :
- 1996
- Publisher :
- Cambridge University Press (CUP), 1996.
-
Abstract
- Kontsevich’s integral is a knot invariant which contains in itself all knot invariants of finite type, or Vassiliev’s invariants. The value of this integral lies in an algebra A0, spanned by chord diagrams, subject to relations corresponding to the flatness of the Knizhnik-Zamolodchikov equation, or the so called infinitesimal pure braid relations [11].
- Subjects :
- Pure mathematics
010308 nuclear & particles physics
General Mathematics
Infinitesimal
010102 general mathematics
Jones polynomial
Bracket polynomial
Mathematics::Geometric Topology
01 natural sciences
Algebra
Knot invariant
Mathematics::Quantum Algebra
Kauffman polynomial
0103 physical sciences
Braid
0101 mathematics
Flatness (mathematics)
Mathematics
Knot (mathematics)
Subjects
Details
- ISSN :
- 21526842 and 00277630
- Volume :
- 142
- Database :
- OpenAIRE
- Journal :
- Nagoya Mathematical Journal
- Accession number :
- edsair.doi...........1bc85504c93c9b23887eb814720e24ad
- Full Text :
- https://doi.org/10.1017/s0027763000005638