Back to Search
Start Over
Symmetric functions and the KP and BKP hierarchies
- Source :
- Journal of Physics A: Mathematical and General. 26:5905-5922
- Publication Year :
- 1993
- Publisher :
- IOP Publishing, 1993.
-
Abstract
- We study the KP hierarchy through its relationship with S-functions. Using results from the classical theory of symmetric functions, the Plucker equations for the hierarchy are derived from the tau function bilinear identity and are given in terms of composite S-functions. Their connection to the Hirota bilinear form of the hierarchy is clarified. A novel combinatorial proof is given of the fact that Schur polynomials solve the KP hierarchy. We show how the analysis can be carried through for the BKP hierarchy in a completely parallel fashion, with the S-functions replaced by Schur Q-functions.
- Subjects :
- Hierarchy
General Physics and Astronomy
Combinatorial proof
Statistical and Nonlinear Physics
Bilinear form
Schur polynomial
Connection (mathematics)
Algebra
Symmetric function
symbols.namesake
Nonlinear Sciences::Exactly Solvable and Integrable Systems
symbols
Ramanujan tau function
Plucker
Mathematical Physics
Mathematics
Subjects
Details
- ISSN :
- 13616447 and 03054470
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Journal of Physics A: Mathematical and General
- Accession number :
- edsair.doi...........1e9b75700e433c112103648812c99172
- Full Text :
- https://doi.org/10.1088/0305-4470/26/21/029