Back to Search Start Over

Prime hAd5 Spike + Nucleocapsid Vaccination Induces Ten-Fold Increases in Mean T-Cell Responses in Phase 1 Subjects that are Sustained Against Spike Variants

Authors :
Joseph P. Balint
Brett Morimoto
Mohit Verma
Lise Zakin
Kayvan Niazi
Victor Peykov
Raymond C.B. Wong
Elizabeth R Gabitzsch
Justin Taft
Kyle Dinkins
Sandeep K. Reddy
Kamil Wnuk
Lennie Sender
Annie Shin
Dusan Bogunovic
Patricia Spilman
Melanie Hermreck
Andy Nguyen
Helty Adisetiyo
Sofija Buta
Patrick Soon-Shiong
Pete Sieling
Thomas H. King
Roosheel S. Patel
Marta Martín-Fernández
Wendy Higashide
Philip Robinson
Shahrooz Rabizadeh
Adrian Rice
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

In response to the need for a safe, efficacious vaccine that elicits vigorous T cell as well as humoral protection against SARS-CoV-2 infection, we have developed a dual-antigen COVID-19 vaccine comprising both the viral spike (S) protein modified to increase cell-surface expression (S-Fusion) and nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to enhance MHC class I and II presentation and T-cell responses. The antigens are delivered using a human adenovirus serotype 5 (hAd5) platform with E1, E2b, and E3 regions deleted that has been shown previously in cancer vaccine studies to be safe and effective in the presence of pre-existing hAd5 immunity. The findings reported here are focused on human T-cell responses due to the likelihood that such responses will sustain efficacy against emerging variants, a hypothesis supported by our in silico prediction of T-cell epitope HLA binding for both the first-wave SARS-CoV-2 ‘A’ strain and the B.1.351 strain K417N, E484K, and N501Y spike and T201I N variants. We demonstrate the hAd5 S-Fusion + N-ETSD vaccine antigens expressed by previously SARS-CoV-2-infected patient dendritic cells elicit Th1 dominant activation of autologous patient T cells, indicating the vaccine antigens have the potential to elicit immune responses in previously infected patients. For participants in our open-label Phase 1b study of the vaccine (NCT04591717; https://clinicaltrials.gov/ct2/show/NCT04591717), the magnitude of Th-1 dominant S- and N-specific T-cell responses after a single prime subcutaneous injection were comparable to T-cell responses from previously infected patients. Furthermore, vaccinated participant T-cell responses to S were similar for A strain S and a series of spike variant peptides, including S variants in the B.1.1.7 and B.1.351 strains. The findings that this dual-antigen vaccine elicits SARS-CoV-2-relevant T-cell responses and that such cell-mediated protection is likely to be sustained against emerging variants supports the testing of this vaccine as a universal booster that would enhance and broaden existing immune protection conferred by currently approved S-based vaccines.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........1ea1bcd99c2048f7a9e3c8aefb2a10f3
Full Text :
https://doi.org/10.1101/2021.04.05.21254940