Back to Search
Start Over
Design and experimental study of a large vacuum-immersed negative-ion source
- Source :
- Fusion Engineering and Design. 26:485-494
- Publication Year :
- 1995
- Publisher :
- Elsevier BV, 1995.
-
Abstract
- A 1 3 - scale source was designed on the basis of previous multi-cusp H− sources developed at the National Institute for Fusion Science (NIFS). It has been developed for the negative-ion-based neutral beam injection system on the test stand in the large helical device (LHD). The ion source was immersed in a vacuum vessel, making the ion source simple and compact. A reduction in the stripping loss of H− ions is also expected. Three studies on the 1 3 - scale vacuum-immersed H− ion source (aiming at a 15 A × 125 kV beam) are described: design features for the vacuum-immersed source at high voltage, a Monte Carlo simulation for pumping gases in the accelerator to estimate the stripping loss of H− ions, and the experimental results of testing the plasma source and beam extraction and acceleration during beam conditioning. As a result of the simulation, the stripping loss was calculated to be about 26% for a reference design. A guiding principle for accelerator design was obtained from the viewpoint of enhanced pumping on transverse gas conductance and resulting reduction in the stripping loss. In experiments, a plasma density of more than 2.5 × 1012cm−3 was produced in the first chamber of the plasma source. During beam extraction, it was found that a beam-induced low density plasma (i.e. 105−107 cm−3) exists in the vacuum vessel. In order to produce a long pulse beam, this plasma must be shielded. Beam conditioning has been completed up to 1 A with beam energy of up to 85 keV for 0.1 s pulse duration. H− current scaling and engineering problems related to full scale performance are discussed.
Details
- ISSN :
- 09203796
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Fusion Engineering and Design
- Accession number :
- edsair.doi...........21647f7c7f44541b4892bfc379bdefde
- Full Text :
- https://doi.org/10.1016/0920-3796(94)00215-s