Back to Search Start Over

Amorphous Silicon and Carbon Nanotubes Layered Thin-Film Based Device for Temperature Sensing Application

Authors :
Vineet Rojwal
Monoj Kumar Singha
T. K. Mondal
Source :
IEEE Sensors Journal. 21:2627-2633
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

This paper proposes an integrated layered doped and undoped amorphous silicon thin-film based temperature sensing device. Temperature sensing performance has been measured for thin film p-i-n (p-type- intrinsic-n-type) configuration-based diode. Linear dependency of voltage on the temperature for forward-biased diode at a constant bias current is demonstrated in the temperature range of 30 – 200 °C. Further, the same device has been introduced with double-walled carbon nanotubes (DWCNTs) to improve the linearity of the sensor. Comparative performance of two configurations p-i-n and p-i-n/DWCNTs for temperature sensing application has been studied. Moreover, this paper discussed the effect of the DWCNTs on the sensor parameters such as sensitivity, S and coefficient of determination, R2. The maximum sensitivity of the sensor, 22.34 mV/ °C for p-i-n configured device and 21.06 mV/°C for p-i-n/DWCNTs configuration in a biasing current range of 10– 60 mA have been found. We achieved a maximum value of the coefficient of determination equal to 0.99889 for a p-i-n configuration and 0.99922 for a p-i-n/DWCNTs configured device.

Details

ISSN :
23799153 and 1530437X
Volume :
21
Database :
OpenAIRE
Journal :
IEEE Sensors Journal
Accession number :
edsair.doi...........218c3356aad47056fe69f341ee717baa
Full Text :
https://doi.org/10.1109/jsen.2020.3025034