Back to Search
Start Over
Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions
- Source :
- Journal of Materials Chemistry A. 9:2742-2753
- Publication Year :
- 2021
- Publisher :
- Royal Society of Chemistry (RSC), 2021.
-
Abstract
- Ammonia is the main precursor for the production of fertilizers, a hydrogen energy carrier and an emerging clean fuel that plays a crucial role in sustaining life on the globe. Herein, hybrid MoSe2@g-C3N4 micro/nanostructures are described that can serve as photoelectrochemical (PEC) catalysts to fix N2 into NH3 in a basic electrolyte at a low potential (−0.3 V vs. RHE) under ambient conditions. In situ functionalization of the hierarchical micro/nanoflowers of MoSe2 with exfoliated g-C3N4 nanosheets dramatically boosts the faradaic efficiency and yield rate up to 28.91% and 7.72 μmol h−1 cm−2 respectively. The high PEC activity can be attributed to the hierarchical architecture, light-harvesting capability, tunable active sites and formation of heterojunctions, as confirmed by various characterization and density functional theory (DFT) calculations. Therefore, this work not only develops an effective procedure to obtain hierarchical heterojunction catalysts towards a high-efficiency NRR but also provides a deep understanding of artificial N2 fixation at the MoSe2@g-C3N4 interface.
- Subjects :
- Nanostructure
Materials science
Renewable Energy, Sustainability and the Environment
Heterojunction
02 engineering and technology
General Chemistry
Electrolyte
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Catalysis
Chemical engineering
Hydrogen fuel
Surface modification
General Materials Science
Density functional theory
0210 nano-technology
Faraday efficiency
Subjects
Details
- ISSN :
- 20507496 and 20507488
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry A
- Accession number :
- edsair.doi...........24640d9b6630fcaa4a4bd259219e3d23
- Full Text :
- https://doi.org/10.1039/d0ta10620h