Back to Search Start Over

III‐nitride quantum dots for ultra‐efficient solid‐state lighting

Authors :
Jeffrey Y. Tsao
Nelson Tansu
Arthur J. Fischer
Jonathan J. Wierer
Source :
Laser & Photonics Reviews. 10:612-622
Publication Year :
2016
Publisher :
Wiley, 2016.

Abstract

III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of higher spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.

Details

ISSN :
18638899 and 18638880
Volume :
10
Database :
OpenAIRE
Journal :
Laser & Photonics Reviews
Accession number :
edsair.doi...........25a7585a41f2e28f7f127af48894badd
Full Text :
https://doi.org/10.1002/lpor.201500332