Back to Search Start Over

Extremal Kähler–Einstein Metric for Two-Dimensional Convex Bodies

Authors :
Bo'az Klartag
Alexander V. Kolesnikov
Source :
The Journal of Geometric Analysis. 29:2347-2373
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Given a convex body $$K \subset {\mathbb {R}}^n$$ with the barycenter at the origin, we consider the corresponding Kahler–Einstein equation $$e^{-\Phi } = \det D^2 \Phi $$ . If K is a simplex, then the Ricci tensor of the Hessian metric $$D^2 \Phi $$ is constant and equals $$\frac{n-1}{4(n+1)}$$ . We conjecture that the Ricci tensor of $$D^2 \Phi $$ for an arbitrary convex body $$K \subseteq {\mathbb {R}}^n$$ is uniformly bounded from above by $$\frac{n-1}{4(n+1)}$$ and we verify this conjecture in the two-dimensional case. The general case remains open.

Details

ISSN :
1559002X and 10506926
Volume :
29
Database :
OpenAIRE
Journal :
The Journal of Geometric Analysis
Accession number :
edsair.doi...........277cd36cca14d6fe0c0e61a14b8cc31d