Back to Search
Start Over
Extremal Kähler–Einstein Metric for Two-Dimensional Convex Bodies
- Source :
- The Journal of Geometric Analysis. 29:2347-2373
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Given a convex body $$K \subset {\mathbb {R}}^n$$ with the barycenter at the origin, we consider the corresponding Kahler–Einstein equation $$e^{-\Phi } = \det D^2 \Phi $$ . If K is a simplex, then the Ricci tensor of the Hessian metric $$D^2 \Phi $$ is constant and equals $$\frac{n-1}{4(n+1)}$$ . We conjecture that the Ricci tensor of $$D^2 \Phi $$ for an arbitrary convex body $$K \subseteq {\mathbb {R}}^n$$ is uniformly bounded from above by $$\frac{n-1}{4(n+1)}$$ and we verify this conjecture in the two-dimensional case. The general case remains open.
Details
- ISSN :
- 1559002X and 10506926
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- The Journal of Geometric Analysis
- Accession number :
- edsair.doi...........277cd36cca14d6fe0c0e61a14b8cc31d