Back to Search
Start Over
AgMESH, a peritrophic matrix-associated protein embedded in Anopheles gambiae melanotic capsules modulates malaria parasite infection
- Publication Year :
- 2021
- Publisher :
- Cold Spring Harbor Laboratory, 2021.
-
Abstract
- Melanins are structurally complex pigments produced by organisms in all domains of life. In insects, melanins are essential for survival and have key roles in cuticle sclerotization, wound healing and innate immunity. In this study, we used a diverse set of molecular, biochemical, and imaging approaches to characterize mosquito melanin involved in innate immune defense (melanotic capsules). We observed that melanotic capsules enclosing Plasmodium berghei ookinetes were composed of an acid-resistant and highly hydrophobic material with granular appearance, which are characteristic properties of melanins. Spectroscopical analyses reveal chemical signatures of eumelanins and pheomelanin. Furthermore, we identified a set of 14 acid-resistant mosquito proteins embedded within the melanin matrix possibly related to an anti-Plasmodium response. Among these, AgMESH, a mucin-related protein highly conserved among insects that is associated with the midgut brush border microvilli proteome of Anopheles gambiae and A. albimanus. AgMESH gene silencing in mosquitos was associated with reduced Plasmodium parasite infection, compromised integrity of the peritrophic matrix, and inability to synthesize a dityrosine network. Our results provide a new approach to study aspects of insect melanogenesis that revealed proteins associated with melanotic capsule, one of which was strongly implicated in the stabilization of the peritrophic matrix and pathogenesis of Plasmodium spp. mosquito infection. Given the conservation of AgMESH among disease-transmitting insect vector species, future analysis of this protein could provide fertile ground for the identification of strategies that block transmission of vector borne diseases to humans.Significance StatementMalaria is a parasitic disease transmitted by mosquito bites. Here, we adapt methodologies to study fungal melanogenesis to explore the melanin-based immune response of Anopheles gambiae against malaria parasites. We reveal that melanotic capsules against Plasmodium are composed of pheomelanin and eumelanin. We demonstrate that melanin-encapsulated Plasmodium is associated to acid-resistant mosquito gut proteins and identify several putative factors of the melanin-mediated immunity. Disruption of AgMESH, a surface-associated protein conserved among other mosquito vectors, demonstrates its ability to impaired formation of the dityrosine network and peritrophic matrix compromising parasite development within the mosquito gut. Our study provides a new approach to investigate the melanin-based defense mechanism in insects and identified a potential host molecule for developing novel universal vector-control schemes.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........27e83720756fe472c7d526d7b63f7a93
- Full Text :
- https://doi.org/10.1101/2021.05.07.443077