Back to Search
Start Over
Recovery Act: Geologic Sequestration Training and Research
- Publication Year :
- 2013
- Publisher :
- Office of Scientific and Technical Information (OSTI), 2013.
-
Abstract
- Work under the project entitled "Geologic Sequestration Training and Research," was performed by the University of Alabama at Birmingham and Southern Company from December 1, 2009, to June 30, 2013. The emphasis was on training of students and faculty through research on topics central to further development, demonstration, and commercialization of carbon capture, utilization, and storage (CCUS). The project had the following components: (1) establishment of a laboratory for measurement of rock properties, (2) evaluation of the sealing capacity of caprocks, (3) evaluation of porosity, permeability, and storage capacity of reservoirs, (4) simulation of CO{sub 2} migration and trapping in storage reservoirs and seepage through seal layers, (5) education and training of students through independent research on rock properties and reservoir simulation, and (6) development of an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate students and one undergraduate student participated in the project. Two were awarded Ph.D. degrees for their work, the first in December 2010 and the second in August 2013. A third graduate student has proposed research on an advanced technique for measurement of porosity and permeability, and has been admitted to candidacy for the Ph.D. The fourth graduatemore » student is preparing his proposal for research on CCUS and solid waste management. The undergraduate student performed experimental measurements on caprock and reservoir rock samples and received his B.S.M.E. degree in May 2012. The "Caprock Integrity Laboratory," established with support from the present project, is fully functional and equipped for measurement of porosity, permeability, minimum capillary displacement pressure, and effective permeability to gas in the presence of wetting phases. Measurements are made at ambient temperature and under reservoir conditions, including supercritical CO{sub 2}. During the course of the project, properties of 19 samples provided by partners on companion projects supported by NETL were measured, covering a range of permeabilities from 0.28 ndarcy to 81 mdarcy. Reservoir simulations were performed for injection of 530,000 tonnes of CO{sub 2} through a single well into the Middle Donovan formation in Citronelle Dome, in southwest Alabama, over 40 years, followed by migration and trapping for 10,000 years, using the TOUGH2 and TOUGHREACT software packages from Lawrence Berkeley National Laboratory. It was estimated that 50 kg CO{sub 2}/m{sup 3} of formation would be converted to mineral phases within the CO{sub 2} plume during that time. None of the sand units considered for CO{sub 2} storage in Citronelle Dome have thickness exceeding the estimated critical CO{sub 2} column height (Berg, 1975) at which seepage might begin, through their confining shale layers. A model for leakage through caprock, based on work by Hildenbrand et al. (2004), including a functional relationship between capillary pressure and the effective permeability to gas in the presence of a wetting phase, demonstrated the sensitivity of long-term storage to caprock permeability and thickness. A traditional course on coal combustion was augmented with material on climate change, coal gasification, and carbon sequestration. A total of 49 students completed the course during two offerings, in Fall 2010 and Fall 2012. It has become a popular advanced elective course in the Department of Mechanical Engineering.« less
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........27f94d81def3e27a3d76888137d15b6c
- Full Text :
- https://doi.org/10.2172/1116015