Back to Search
Start Over
Classification of Voting Rules
- Source :
- Social Choice and Democracy ISBN: 9783642705984
- Publication Year :
- 1985
- Publisher :
- Springer Berlin Heidelberg, 1985.
-
Abstract
- Chapter 3 showed that a voting rule, a on a finite set of alternatives, W, is classified by a single integer, namely the Nakamura number v(σ). If the rule is collegial, so v(σ) = ∞, then for any acyclic profile p the relation σ(p) will be acyclic. If σ is non-collegial, with v(σ) < ∞ then σ(p) will be acyclic as long as |w| < v(σ), while an acyclic profile p can always be constructed such that σ(p) is cyclic on W when |w| ≥ v(σ).
Details
- ISBN :
- 978-3-642-70598-4
- ISBNs :
- 9783642705984
- Database :
- OpenAIRE
- Journal :
- Social Choice and Democracy ISBN: 9783642705984
- Accession number :
- edsair.doi...........28ab1f7505c4a10216dce8e796ab616a
- Full Text :
- https://doi.org/10.1007/978-3-642-70596-0_7