Back to Search Start Over

Classification of Voting Rules

Authors :
Norman Schofield
Source :
Social Choice and Democracy ISBN: 9783642705984
Publication Year :
1985
Publisher :
Springer Berlin Heidelberg, 1985.

Abstract

Chapter 3 showed that a voting rule, a on a finite set of alternatives, W, is classified by a single integer, namely the Nakamura number v(σ). If the rule is collegial, so v(σ) = ∞, then for any acyclic profile p the relation σ(p) will be acyclic. If σ is non-collegial, with v(σ) < ∞ then σ(p) will be acyclic as long as |w| < v(σ), while an acyclic profile p can always be constructed such that σ(p) is cyclic on W when |w| ≥ v(σ).

Details

ISBN :
978-3-642-70598-4
ISBNs :
9783642705984
Database :
OpenAIRE
Journal :
Social Choice and Democracy ISBN: 9783642705984
Accession number :
edsair.doi...........28ab1f7505c4a10216dce8e796ab616a
Full Text :
https://doi.org/10.1007/978-3-642-70596-0_7