Back to Search
Start Over
$$d\mathbb {Z}$$-Cluster tilting subcategories of singularity categories
- Source :
- Mathematische Zeitschrift. 297:803-825
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- For an exact category $${{\mathcal {E}}}$$ E with enough projectives and with a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory, we show that the singularity category of $${{\mathcal {E}}}$$ E admits a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of $${{\mathcal {E}}}$$ E and $${\underline{{{\mathcal {E}}}}}$$ E ̲ . We also deduce that the Gorenstein projectives of $${{\mathcal {E}}}$$ E admit a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory under some assumptions. Finally, we compute the $$d\mathbb {Z}$$ d Z -cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga–Gorenstein.
Details
- ISSN :
- 14321823 and 00255874
- Volume :
- 297
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift
- Accession number :
- edsair.doi...........2adeb4884ae587c7ea2183f290d97dd8
- Full Text :
- https://doi.org/10.1007/s00209-020-02534-4