Back to Search Start Over

$$d\mathbb {Z}$$-Cluster tilting subcategories of singularity categories

Authors :
Sondre Kvamme
Source :
Mathematische Zeitschrift. 297:803-825
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

For an exact category $${{\mathcal {E}}}$$ E with enough projectives and with a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory, we show that the singularity category of $${{\mathcal {E}}}$$ E admits a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of $${{\mathcal {E}}}$$ E and $${\underline{{{\mathcal {E}}}}}$$ E ̲ . We also deduce that the Gorenstein projectives of $${{\mathcal {E}}}$$ E admit a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory under some assumptions. Finally, we compute the $$d\mathbb {Z}$$ d Z -cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga–Gorenstein.

Details

ISSN :
14321823 and 00255874
Volume :
297
Database :
OpenAIRE
Journal :
Mathematische Zeitschrift
Accession number :
edsair.doi...........2adeb4884ae587c7ea2183f290d97dd8
Full Text :
https://doi.org/10.1007/s00209-020-02534-4