Back to Search
Start Over
Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting
- Source :
- Dalton Transactions. 47:8787-8793
- Publication Year :
- 2018
- Publisher :
- Royal Society of Chemistry (RSC), 2018.
-
Abstract
- Transition metal (TM) oxides and hydroxides are one of the important candidates for the development of durable and low-cost electrocatalysts towards water splitting. The key issue is exploring effective methods to improve their electrocatalytic activity. Herein, we report a new type of P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet array (abbr. P-Ni(OH)2/NiMoO4) grown on Ni foam (NF), which can act as a highly efficient electrocatalyst towards overall water splitting. Such a composite was obtained by a three-step preparation process. In the first two hydrothermal reactions, the crystalline Ni(OH)2 hierarchical nanosheet arrays were grown on NF and then the low crystallinity NiMoO4 was grafted on the Ni(OH)2 nanosheets. In the third phosphorization step, P element was doped into the composite Ni(OH)2/NiMoO4. Electrocatalytic experiments show that P-Ni(OH)2/NiMoO4 possesses a smaller overpotential (60 mV) and lower Tafel slope (130 mV dec−1) toward HER in 1 M KOH. When it was employed as an integrated water splitting catalyst, only a potential of 1.55 V was required to achieve a current density of 10 mA cm−2. This catalytic activity is even better than those of electrolyzers constructed with noble metals Pt/C∥IrO2. The superior electrocatalytic performance of P-Ni(OH)2/NiMoO4 can be attributed to the high quality of crystalline Ni(OH)2 nanosheet arrays grown on NF, which dramatically improve the conductivity. Furthermore, the hierarchical structure not only increases the surface area and exposes more catalytically active sites, but also provides a superaerophobic surface, which helps to accelerate the release of generated bubbles. Moreover, the synergistic effects between P-Ni(OH)2 and P-NiMoO4 efficiently promote the HER and OER processes also. This work may suggest new a way to explore TM oxide/hydroxide-based durable electrocatalysts with highly efficient electrocatalytic activities towards overall water splitting.
- Subjects :
- Tafel equation
Materials science
Oxide
02 engineering and technology
Overpotential
010402 general chemistry
021001 nanoscience & nanotechnology
Electrocatalyst
01 natural sciences
0104 chemical sciences
Catalysis
Inorganic Chemistry
chemistry.chemical_compound
chemistry
Transition metal
Chemical engineering
Water splitting
0210 nano-technology
Nanosheet
Subjects
Details
- ISSN :
- 14779234 and 14779226
- Volume :
- 47
- Database :
- OpenAIRE
- Journal :
- Dalton Transactions
- Accession number :
- edsair.doi...........2c22dd860b46377d359a726319d079a2