Back to Search Start Over

THE ROBIN PROBLEM FOR THE HÉNON EQUATION

Authors :
Haiyang He
Source :
Bulletin of the Australian Mathematical Society. 88:1-11
Publication Year :
2013
Publisher :
Cambridge University Press (CUP), 2013.

Abstract

In this paper, we consider the following Robin problem:$$\begin{eqnarray*}\displaystyle \left\{ \begin{array}{ @{}ll@{}} \displaystyle - \Delta u= \mid x{\mathop{\mid }\nolimits }^{\alpha } {u}^{p} , \quad & \displaystyle x\in \Omega , \\ \displaystyle u\gt 0, \quad & \displaystyle x\in \Omega , \\ \displaystyle \displaystyle \frac{\partial u}{\partial \nu } + \beta u= 0, \quad & \displaystyle x\in \partial \Omega , \end{array} \right.&&\displaystyle\end{eqnarray*}$$where$\Omega $is the unit ball in${ \mathbb{R} }^{N} $centred at the origin, with$N\geq 3$,$p\gt 1$,$\alpha \gt 0$,$\beta \gt 0$, and$\nu $is the unit outward vector normal to$\partial \Omega $. We prove that the above problem has no solution when$\beta $is small enough. We also obtain existence results and we analyse the symmetry breaking of the ground state solutions.

Details

ISSN :
17551633 and 00049727
Volume :
88
Database :
OpenAIRE
Journal :
Bulletin of the Australian Mathematical Society
Accession number :
edsair.doi...........2c83599f032f94bb6770c209cee51111
Full Text :
https://doi.org/10.1017/s0004972713000476