Back to Search Start Over

Quantitative evaluation of bone-mineral density loss using X-ray coherent scattering

Authors :
Roosevel Droppa
Giuliana Tromba
Regina C. Barroso
Ricardo Tadeu Lopes
Delson Braz
Luigi Rigon
Franco Zanini
D. Dreossi
João Carlos D. Lima
Lucia Mancini
Luís Fernando de Oliveira
Carlos Roberto Ferreira Castro
Source :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 579:318-321
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

In this work, we intend to relate the mineral to non-mineral bone scattering intensity ratio with the bone-mineral density (BMD) reduction. In this way, EDXRD can be a novel technique to measure BMD loss in function of the mineral and non-mineral scattering intensity. The scattering profiles were obtained at Laboratorio Nacional de Luz Sincrotron (LNLS) at the X-ray diffraction beamline XD2. A double-crystal Si(1 1 1) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth (Δ λ / λ ≈10 −4 ) at 11 keV. The sample holder has a circle depression in the center to contain a range of bone and fat mixture ratios. The mixture consists of powdered cortical bone and fat, which together simulate in vivo bone. The diffraction patterns were carried out with 0.5 mm slits after and behind of the sample holder. The data were collected in 0.05° increments every 0.5 s. EDXRD results show an indication of different bone densities may be distinguished which suggested that X-ray coherent scattering technique may have a role in monitoring changes in BMD via changes in the related scattering intensity of mineral and non-mineral bone. The main aim of the Synchrotron Radiation for MEdical Physics (SYRMEP) project at the ELETTRA is the investigation and the development of innovative techniques for medical imaging. The beamline provides, at a distance of about 23 m from the source, a monochromatic, laminar section X-ray beam with a maximum area of about 160×5 mm 2 at 20 keV. The monochromator, that covers the entire angular acceptance of the beamline, is based on a double-Si (1 1 1) crystal system working in Bragg configuration. A micrometric vertical and horizontal translation stage allows the positioning and scanning of the sample with respect to the stationary beam. In this case, the detector is kept stationary in front of the beam, while the object is rotated in discrete steps in front of it. At each rotation, a projection is acquired. A goniometric double-cradle system is used to adjust the rotation axis, which must be orthogonal with respect to the detector plane in transmission computed tomography (CT). The samples consisted of a 8 mm cube of bovine bone surrounded of a cartilage interface. High-resolution images of the trabecular structure were obtained by means a 16-bit CCD camera, 2048×2048 pixels, 14 μm pixel size (maximum spatial resolution: 25 μm).

Details

ISSN :
01689002
Volume :
579
Database :
OpenAIRE
Journal :
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Accession number :
edsair.doi...........2dc5915ce5cedde8e78a0b97565edd35
Full Text :
https://doi.org/10.1016/j.nima.2007.04.057