Back to Search Start Over

A bottom-up approach for exploring the role of humidity in high heat-related mortality events: A Multi-City, Multi-Country study

Authors :
Sidharth Sivaraj
Samuel Lüthi
Eunice Lo
Ana Maria Vicedo-Cabrera
Publication Year :
2023
Publisher :
Copernicus GmbH, 2023.

Abstract

Although studies based on physiological models have repeatedly shown that high humidity levels lead to stronger heat stress in humans, findings from epidemiological studies have remained inconclusive on the matter till date. We aim to employ a ‘bottom-up’ strategy of identifying key drivers of compound events to explore the role played by humidity in high heat-related mortality events, spanning across multiple cities in multiple countries. We used daily data on all-cause mortality, mean temperature and mean relative humidity from 11 cities across the world and applied state-of-the-art epidemiological models to compute the daily observed total mortality counts attributable to heat (i.e., limited to days with average temperature exceeding the ‘temperature of minimum mortality’ (MMT) in each city). Each of these days with mean temperature exceeding MMT is considered as an ’event’ and events with highest mortality counts attributable to heat from multiple cities are analysed in a 2D scatter plot of the corresponding percentile rank of temperature and humidity observed during those events. The frequency of such high impact events in the temperature-humidity percentile space across multiple cities, categorised into sub-groups based on the temperature and humidity climatology of the cities, was then studied. It was observed that close to 90% of the high impact events occurred during high temperature (> 90th percentile) and non-high humid ( 50th percentile), were mostly representative of cities with prevailing high humidity conditions on average during the warmest months, when compared across all the cities. Based on our preliminary findings, there is no conclusive evidence that high humidity conditions were prevalent during high heat-mortality impact events, but further analysis incorporating more cities and other climatological variables of interests such as absolute humidity, wet-bulb globe temperature etc. are planned. This novel framework provides valuable insights into the role of humidity in heat stress mortality and can be generalised to address other similar complex research questions in environmental epidemiology.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........2e07e7f744fa528242340b98df812a1c
Full Text :
https://doi.org/10.5194/egusphere-egu23-10996