Back to Search
Start Over
Normal family of meromorphic functions concerning limited the numbers of zeros
- Source :
- The Journal of Analysis. 29:803-814
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Let $$k, n \in {\mathbb {N}}, l \in {\mathbb {N}}\backslash \left\{ 1 \right\} , m\in {\mathbb {N}}\cup \left\{ 0 \right\} $$ , and let $$a(z)(\not \equiv 0)$$ be a holomorphic function, all zeros of a(z) have multiplicities at most m. Let $${\mathcal {F}}$$ be a family of meromorphic functions in D. If for each $$f \in {\mathcal {F}}$$ , the zeros of f have multiplicity at least $$k+m$$ , and for $$f\in {\mathcal {F}}$$ , $$f^{l}(f^{(k)})^{n}-a(z)$$ has at most one zero in D, then $${\mathcal {F}}$$ is normal in D.
Details
- ISSN :
- 23672501 and 09713611
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- The Journal of Analysis
- Accession number :
- edsair.doi...........3103b2c61705e0edde8a9c4e6d18c1cd
- Full Text :
- https://doi.org/10.1007/s41478-020-00280-8