Back to Search Start Over

Anti-inflammatory drugs degradation during LED-UV365 photolysis of free chlorine: roles of reactive oxidative species and formation of disinfection by-products

Authors :
Chaoqun Tan
Wenhai Chu
Haotian Wu
Jing Deng
Haiying Gao
Xu Lu
Huan He
Source :
Water Research. 185:116252
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Light-emitting diode (LED) is environmentally friendly with longer life compared with traditionally mercury lamps. This study investigated the non-steroidal anti-inflammatory drugs (NSAIDs)- phenacetin (PNT) and acetaminophen (ACT)- removal during LED-UV (365 nm) photolysis of free available chlorine (FAC). Degradation of PNT and ACT during LED-UV365/FAC treatment at pH 5.5-8.5 followed the pseudo-first order kinetics. The presence of hydroxyl radicals (·OH), reactive chlorine species (RCS), and ozone (O3, transformed from O (3P)) were screened by using scavengers of ethanol (EtOH), tert-Butanol (TBA), and 3-buten-2ol, and 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMP), and quantified by competition kinetics with probing compounds of nitrobenzene (NB), benzoate acid (BA), 1,4-dimethoxybenzene (DMOB). Higher pH would lead to decrease of ·OH contribution and an increase of FAC contribution to PNT and ACT degradation. It has been determined that the contribution of O3 to degradation of PNT and ACT was less than 5% for all pHs, and O3(P) reacts toward EtOH with second-order constant of 1.52 × 109 M-1s-1. LED-UV365/FAC system reduced the formation of five typical CX3-R type disinfection by-products (DBPs) as well as the cytotoxicity and genotoxicity of water samples at pH 5.5 and 8.5, compared with FAC alone. The decrease of DBPs formation resulted from fast FAC decomposition upon LED-UV365 irradiation. A feasible reaction pathway of DBPs formation in the LED-UV365/FAC system was examined with density functional theory (DFT). For FAC decay during LED-UV365/FAC with effluent from wastewater, the residual FAC in 15 min was 0.8 mg/L (lower than limit of 0.2 mg/L) once initial FAC was 2.0 mg/L. The results indicate that more tests on the balance of target pollutant removal efficiency, residual FAC and cost should be explored in LED-UV365/FAC system for application.

Details

ISSN :
00431354
Volume :
185
Database :
OpenAIRE
Journal :
Water Research
Accession number :
edsair.doi...........313ff76f73c84be6b9f6d2fe32624a48