Back to Search Start Over

A novel 2 μm, frequency conversion based, laser transmitter for CO 2 DIAL

Authors :
A. Godard
A. Bohman
A.K. Mohamed
Peter Geiser
Michel Lefebvre
Fabien Marnas
M. Raybaut
P. Kaspersen
Pierre H. Flamant
Source :
SPIE Proceedings.
Publication Year :
2009
Publisher :
SPIE, 2009.

Abstract

We report on a novel 2 μm laser transmitter for CO 2 DIAL, based on a nanosecond parametric master oscillator-power amplifier architecture. The master oscillator is an entangled-cavity, doubly resonant, optical parametric oscillator, based on a type-II periodically poled Lithium Niobate nonlinear crystal. This device provides single-longitudinal-mode radiation, with a high frequency stability and high beam quality, with no need of an additional seeding source. The 2.05 μm signal emission is amplified by multi-stage parametric amplifiers to generate more than 10 mJ. After amplification, both the spectral purity and beam quality are maintained: we demonstrate single-longitudinal-mode emission with a frequency stability better than 3 MHz rms, within a nearly diffraction limited beam, with a M 2 quality factor close to 1.5. The unique performances of this parametric architecture make this device a relevant transmitter for CO 2 differential-absorption LIDAR. Such approach could be readily duplicated for the detection of other greenhouse gases.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi...........3195bd1dffcf2ad17af278914d55e027
Full Text :
https://doi.org/10.1117/12.830285