Back to Search Start Over

Abstract 5407: A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis

Authors :
Brian S. White
Xing Yi Woo
Soner Koc
Todd Sheridan
Steven B. Neuhauser
Shidan Wang
Yvonne A. Evrard
John David Landua
R Jay Mashl
Sherri R. Davies
Bingliang Fang
Maria Gabriela Raso
Kurt W. Evans
Matthew H. Bailey
Yeqing Chen
Min Xiao
Jill Rubinstein
Ali Foroughi pour
Lacey Elizabeth Dobrolecki
Maihi Fujita
Junya Fujimoto
Guanghua Xiao
Ryan C. Fields
Jacqueline L. Mudd
Xiaowei Xu
Melinda G. Hollingshead
Shahanawaz Jiwani
PDXNet consortium
Tiffany A. Wallace
Jeffrey A. Moscow
James H. Doroshow
Nicholas Mitsiades
Salma Kaochar
Chong-xian Pan
Moon S. Chen
Luis G. Carvajal-Carmona
Alana L. Welm
Bryan E. Welm
Ramaswamy Govindan
Shunqiang Li
Michael A. Davies
Jack A. Roth
Funda Meric-Bernstam
Yang Xie
Meenhard Herlyn
Li Ding
Michael T. Lewis
Carol J. Bolt
Dennis A. Dean
Jeffrey H. Chuang
Source :
Cancer Research. 83:5407-5407
Publication Year :
2023
Publisher :
American Association for Cancer Research (AACR), 2023.

Abstract

Patient-derived xenografts (PDXs) model human intra-tumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histological imaging via hematoxylin and eosin (H&E) staining is performed on PDX samples for routine assessment and, in principle, captures the complex interplay between tumor and stromal cells. Deep learning (DL)-based analysis of large human H&E image repositories has extracted inter-cellular and morphological signals correlated with disease phenotype and therapeutic response. Here, we present an extensive, pan-cancer repository of nearly 1,000 PDX and paired human progenitor H&E images. These images, curated from the PDXNet consortium, are associated with genomic and transcriptomic data, clinical metadata, pathological assessment of cell composition, and, in several cases, detailed pathological annotation of tumor, stroma, and necrotic regions. We demonstrate that DL can be applied to these images to classify tumor regions with an accuracy of 0.87. Further, we show that DL can predict xenograft-transplant lymphoproliferative disorder, the unintended outgrowth of human lymphocytes at the transplantation site, with an accuracy of 0.97. This repository enables PDX-specific investigations of cancer biology through histopathological analysis and contributes important model system data that expand on existing human histology repositories. We expect the PDXNet Image Repository to be valuable for controlled digital pathology analysis, both for the evaluation of technical issues such as stain normalization and for development of novel computational methods based on spatial behaviors within cancer tissues. Citation Format: Brian S. White, Xing Yi Woo, Soner Koc, Todd Sheridan, Steven B. Neuhauser, Shidan Wang, Yvonne A. Evrard, John David Landua, R Jay Mashl, Sherri R. Davies, Bingliang Fang, Maria Gabriela Raso, Kurt W. Evans, Matthew H. Bailey, Yeqing Chen, Min Xiao, Jill Rubinstein, Ali Foroughi pour, Lacey Elizabeth Dobrolecki, Maihi Fujita, Junya Fujimoto, Guanghua Xiao, Ryan C. Fields, Jacqueline L. Mudd, Xiaowei Xu, Melinda G. Hollingshead, Shahanawaz Jiwani, PDXNet consortium, Tiffany A. Wallace, Jeffrey A. Moscow, James H. Doroshow, Nicholas Mitsiades, Salma Kaochar, Chong-xian Pan, Moon S. Chen, Luis G. Carvajal-Carmona, Alana L. Welm, Bryan E. Welm, Ramaswamy Govindan, Shunqiang Li, Michael A. Davies, Jack A. Roth, Funda Meric-Bernstam, Yang Xie, Meenhard Herlyn, Li Ding, Michael T. Lewis, Carol J. Bolt, Dennis A. Dean, Jeffrey H. Chuang. A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5407.

Subjects

Subjects :
Cancer Research
Oncology

Details

ISSN :
15387445
Volume :
83
Database :
OpenAIRE
Journal :
Cancer Research
Accession number :
edsair.doi...........31c837836d2e1d47bb5b70411dd75e85
Full Text :
https://doi.org/10.1158/1538-7445.am2023-5407