Back to Search Start Over

A metastable brominated nanodiamond surface enables room temperature and catalysis-free amine chemistry

Authors :
Cynthia Melendrez
Jorge Lopez-Rosas
Camron Stokes
Tsz Cheung
Sang-Jun Lee
Charles Titus
Jocelyn Valenzuela
Grace Jeanpierre
Halim Muhammad
Polo Tran
Perla Sandoval
Tyanna Supreme
Virginia Altoe
Jan Vavra
Helena Raabova
Vaclav Vanek
Sami Sainio
William Doriese
Galen O'Neil
Daniel Swetz
Joel Ullom
Kent Irwin
Dennis Nordlund
Petr Cigler
Abraham Wolcott
Publication Year :
2022
Publisher :
American Chemical Society (ACS), 2022.

Abstract

Bromination of high-pressure high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming and most researchers simply use oxygen-terminated ND (alcohols and acids) as a reactive species. In this work, we transformed a tertiary alcohol-rich ND surface to an amine surface with 50% surface coverage and was limited by the initial rate of bromination. We observed that alkyl-bromide moieties are highly labile on NDs and are metastable as previously found using density functional theory. The instability of the bromine terminated ND is explained by steric hindrance and poor surface energy stabilization. The strong leaving group properties of the alkyl-bromide intermediate were found to form diamond-nitrogen bonds at room temperature and without catalysts. The chemical lability of the brominated ND surface led to efficient amination with NH3•THF at 298 K, and a catalyst-free Sonogashira-type reaction with an alkyne-amine produced an 11-fold increase in amination rate. Overlapping spectroscopies under inert, temperature-dependent and open-air conditions provided unambiguous chemical assignments. Amine-terminated NDs and folic acid were conjugated using sulfo-NHS/EDC coupling reagents to form amide bonds, confirming that standard amine chemistry remains viable. This work supports that a robust pathway exists to activate a chemically inert diamond surface at room temperature, which broadens the pathways of bond formation when a reactive alkyl-bromide surface is prepared. The unique surface properties of brominated and aminated nanodiamond reported here are impactful to researchers who wish to chemically tune diamond for quantum sensing applications or as an electron source for chemical transformations.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........32029f3d733e1302a83bd49163e3622b
Full Text :
https://doi.org/10.26434/chemrxiv-2022-xzxmr