Back to Search Start Over

Forest vs. grassland drought response inferred from eddy covariance and Earth observations

Authors :
Anne Hoek van Dijke
René Orth
Adriaan Teuling
Martin Herold
Martin Schlerf
Mirco Migliavacca
Miriam Machwitz
Tessa van Hateren
Xin Yu
Kaniska Mallick
Publication Year :
2023
Publisher :
Copernicus GmbH, 2023.

Abstract

Temperate forests and grasslands have different drought response strategies. Trees often control their stomata to reduce water loss in order to prevent hydraulic failure and ensure the survival of their aboveground biomass. In contrast, grasses generally have a less strong stomatal control and maintain high photosynthesis and transpiration until the soil moisture gets depleted. That is when their leaves wilt and the grasslands see a reduction in their aboveground green biomass. Both the increased stomatal control and the reduction in aboveground biomass decrease the surface conductance, i.e. decrease the exchange of water and carbon between the leaves and the atmosphere. Therefore, the drought response of vegetation has major impacts on the land-atmosphere fluxes of water, energy, and carbon, as well as the development of droughts and heat waves.Here, we study to which extent the different drought responses of forests and grasslands are reflected in remote sensing data. We hypothesise that (i) for both forests and grasslands, there are drought-induced changes in thermal infrared based data (e.g., land surface temperature), because of the decreased surface conductance for both land cover types. Furthermore, we hypothesise that (ii) drought-induced changes in optical based indices (e.g. the normalized difference vegetation index) can be detected for grasslands but not for forests, because of the different drought response strategies of trees and grasses. In this study we jointly analyze site-scale and remote sensing data. We use eddy-covariance data for 52 forest sites and 11 grassland sites across the northern hemisphere to calculate the surface conductance, and we identify droughts from low soil moisture content and reduced surface conductance. Then we analyse how the drought response is reflected in thermal and optical indices derived from MODIS satellite data.The results show that our hypotheses are largely confirmed. The land surface temperature increases with drought-induced reductions in surface conductance for both forests and grasslands. By contrast, the optical indices show a much stronger response for grasslands than for forests. We conclude that the different canopy-level drought response strategies of trees and grasses are reflected in remote sensing data. Our study highlights that the joint investigation of multiple remote sensing data streams enables insights beyond the analyses of individual indices, such as a better understanding of the drought response strategies across land cover types. Further, a host of different satellite data should be used to monitor and study vegetation drought responses of forests and grasslands to ensure accurate inference on the implications on water, energy, and carbon fluxes.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........3253dfccb55b9380548147b8dec7d0d2