Back to Search Start Over

Rietveld refinement and estimation of residual stress in GDC–LSCF oxygen transport membrane ceramic composites

Authors :
Seyoung Kim
Young-Hoon Seong
Ji Haeng Yu
In-Sub Han
Kati Raju
Soo-Hyun Kim
Source :
Ceramics International. 44:10293-10298
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

The phase purity and crystal structure of dual-phase Ce .9 Gd .1 O 2–δ –La .6 Sr .4 Co .2 Fe .8 O 3–δ (GDC–LSCF) composites were refined using data obtained from X-ray diffraction (XRD) by employing the Rietveld method. Rietveld analysis indicated that the structures of GDC and LSCF phases are well crystallized as cubic Fm 3 m and rhombohedral R 3 c space groups, respectively. Scanning electron microscopy images showed smooth and dense structures, depicting a homogeneous crystalline structure of the samples. When the composites were cooled from their sintering temperature (1250 °C), compressive stresses were generated in the GDC and corresponding tensile stresses were generated in the LSCF due to differences in thermal expansion coefficients. The compressive residual stresses of the composites were investigated by high-angle XRD measurements using the well-known sin 2 ψ method. The average compressive residual stresses in GDC phase are estimated to be − 312 and − 290 MPa for 80 GDC–20 LSCF and 50 GDC–50 LSCF, respectively. The aim of this study is to provide a better understanding of the crystal structures and residual stresses in GDC–LSCF composites through XRD and the suitability of these composites for oxygen transport membranes.

Details

ISSN :
02728842
Volume :
44
Database :
OpenAIRE
Journal :
Ceramics International
Accession number :
edsair.doi...........329da233254523210c3592b2935df52a
Full Text :
https://doi.org/10.1016/j.ceramint.2018.03.036