Back to Search Start Over

Synthesis of MnO2 nanostructures with MnS-deposits for high performance supercapacitor electrodes

Authors :
Rajesh Rajagopal
Kwang Sun Ryu
Source :
New Journal of Chemistry. 43:12987-13000
Publication Year :
2019
Publisher :
Royal Society of Chemistry (RSC), 2019.

Abstract

We report the synthesis of MnO2 nanostructures with MnS deposits via a facile one-step hydrothermal process for high-performance supercapacitor applications. In comparison to pure MnO2 nanoflowers, MnS deposition substantially alters the morphology of the MnO2 nanoflowers with respect to the addition of the sulfur source. The crystalline nature and changes in morphology of the synthesized composite materials were confirmed by powder XRD and FESEM analysis. The electrochemical behaviors were examined by cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy techniques in 1 M Na2SO4 aqueous electrolytes. The 3MnS/MnO2 nanocomposite exhibits a relatively high specific capacitance of 384.25 F g−1 at a current density of 1 A g−1, which is nearly two-fold higher than that of pure MnO2 nanoflowers (204.25 F g−1). A symmetric capacitor was fabricated using the 3MnS/MnO2 nanocomposite and activated carbon as positive and negative electrodes, respectively. The resulting asymmetric device exhibits a specific capacitance of 84.56 F g−1 at a current density of 0.5 A g−1 and a cycle stability of ∼87% after 1000 charge–discharge cycles.

Details

ISSN :
13699261 and 11440546
Volume :
43
Database :
OpenAIRE
Journal :
New Journal of Chemistry
Accession number :
edsair.doi...........3455561ab1d1a33c626b2b53b340c08a
Full Text :
https://doi.org/10.1039/c9nj02513h