Back to Search
Start Over
Synthesis of MnO2 nanostructures with MnS-deposits for high performance supercapacitor electrodes
- Source :
- New Journal of Chemistry. 43:12987-13000
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- We report the synthesis of MnO2 nanostructures with MnS deposits via a facile one-step hydrothermal process for high-performance supercapacitor applications. In comparison to pure MnO2 nanoflowers, MnS deposition substantially alters the morphology of the MnO2 nanoflowers with respect to the addition of the sulfur source. The crystalline nature and changes in morphology of the synthesized composite materials were confirmed by powder XRD and FESEM analysis. The electrochemical behaviors were examined by cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy techniques in 1 M Na2SO4 aqueous electrolytes. The 3MnS/MnO2 nanocomposite exhibits a relatively high specific capacitance of 384.25 F g−1 at a current density of 1 A g−1, which is nearly two-fold higher than that of pure MnO2 nanoflowers (204.25 F g−1). A symmetric capacitor was fabricated using the 3MnS/MnO2 nanocomposite and activated carbon as positive and negative electrodes, respectively. The resulting asymmetric device exhibits a specific capacitance of 84.56 F g−1 at a current density of 0.5 A g−1 and a cycle stability of ∼87% after 1000 charge–discharge cycles.
- Subjects :
- Supercapacitor
Nanocomposite
Chemistry
02 engineering and technology
General Chemistry
010402 general chemistry
021001 nanoscience & nanotechnology
Electrochemistry
01 natural sciences
Capacitance
Catalysis
0104 chemical sciences
Dielectric spectroscopy
Chemical engineering
Electrode
Materials Chemistry
Cyclic voltammetry
0210 nano-technology
Current density
Subjects
Details
- ISSN :
- 13699261 and 11440546
- Volume :
- 43
- Database :
- OpenAIRE
- Journal :
- New Journal of Chemistry
- Accession number :
- edsair.doi...........3455561ab1d1a33c626b2b53b340c08a
- Full Text :
- https://doi.org/10.1039/c9nj02513h