Back to Search Start Over

CONSERVATIVITY OF ULTRAFILTERS OVER SUBSYSTEMS OF SECOND ORDER ARITHMETIC

Authors :
Antonio Montalbán
Richard A. Shore
Source :
The Journal of Symbolic Logic. 83:740-765
Publication Year :
2018
Publisher :
Cambridge University Press (CUP), 2018.

Abstract

We extend the usual language of second order arithmetic to one in which we can discuss an ultrafilter over of the sets of a given model. The semantics are based on fixing a subclass of the sets in a structure for the basic language that corresponds to the intended ultrafilter. In this language we state axioms that express the notion that the subclass is an ultrafilter and additional ones that say it is idempotent or Ramsey. The axioms for idempotent ultrafilters prove, for example, Hindman’s theorem and its generalizations such as the Galvin--Glazer theorem and iterated versions of these theorems (IHT and IGG). We prove that adding these axioms to IHT produce conservative extensions of ACA0+IHT,${\rm{ACA}}_{\rm{0}}^ +$, ATR0,${\rm{\Pi }}_2^1$-CA0, and${\rm{\Pi }}_2^1$-CA0for all sentences of second order arithmetic and for full Z2for the class of${\rm{\Pi }}_4^1$sentences. We also generalize and strengthen a metamathematical result of Wang (1984) to show, for example, that any${\rm{\Pi }}_2^1$theorem ∀X∃YΘ(X,Y) provable in ACA0or${\rm{ACA}}_{\rm{0}}^ +$there aree,k∈ ℕ such that ACA0or${\rm{ACA}}_{\rm{0}}^ +$proves that ∀X(Θ(X, Φe(J(k)(X))) where Φeis theeth Turing reduction andJ(k)is thekth iterate of the Turing or Arithmetic jump, respectively. (A similar result is derived for${\rm{\Pi }}_3^1$theorems of${\rm{\Pi }}_1^1$-CA0and the hyperjump.)

Details

ISSN :
19435886 and 00224812
Volume :
83
Database :
OpenAIRE
Journal :
The Journal of Symbolic Logic
Accession number :
edsair.doi...........35d0f64ff0f2aba55a90281dd5264dcb
Full Text :
https://doi.org/10.1017/jsl.2017.76