Back to Search
Start Over
Darboux–Bäcklund transformation and localized excitation on the periodic wave background for the nonlinear Schrödinger equation
- Source :
- Wave Motion. 106:102787
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- We construct the exact nonlinear wave solutions of the Nonlinear Schrodinger equation on the period wave background instead of on a constant background. By using Darboux–Backlund transformation, soliton and breather solutions on two types of cnoidal wave backgrounds are given. The density evolutions of these solutions are given under different parameters to study their wave structures and dynamical properties.
- Subjects :
- Physics
Breather
Applied Mathematics
General Physics and Astronomy
Cnoidal wave
01 natural sciences
010305 fluids & plasmas
Computational Mathematics
Nonlinear system
symbols.namesake
Nonlinear Sciences::Exactly Solvable and Integrable Systems
Transformation (function)
Modeling and Simulation
0103 physical sciences
symbols
Soliton
Constant (mathematics)
Nonlinear Sciences::Pattern Formation and Solitons
010301 acoustics
Nonlinear Schrödinger equation
Excitation
Mathematical physics
Subjects
Details
- ISSN :
- 01652125
- Volume :
- 106
- Database :
- OpenAIRE
- Journal :
- Wave Motion
- Accession number :
- edsair.doi...........3617c8dbb75969e4b518002806c2c9a3