Sorry, I don't understand your search. ×
Back to Search Start Over

Pt/(InGa)2O3/n-Si Heterojunction-Based Solar-Blind Ultraviolet Photovoltaic Detectors with an Ideal Absorption Cutoff Edge of 280 nm

Authors :
Wei Zheng
Qichang Hu
Yibing Wu
Shiyan Lin
Dapeng Ye
Zhao Wang
Source :
ACS Applied Materials & Interfaces. 13:44568-44576
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Ga2O3 is a popular material for research on solar-blind ultraviolet detectors. However, its absorption cutoff edge is 253 nm, which is not an ideal cutoff edge of 280 nm. In this work, by adjusting the ratio of In/Ga elements in the films, a high-quality (In0.11Ga0.89)2O3 film with an absorption cutoff edge of 280 nm was obtained, which owns a uniform surface and preferred orientation. On this basis, a solar-blind ultraviolet photovoltaic detector was constructed based on the Pt/(In0.11Ga0.89)2O3/n-Si heterojunction. When the device is exposed to 254 nm UV light, its open-circuit voltage (VOC) can reach 354 mV. Under 0 V bias, the device has a responsivity of 0.48 mA/W with a rise time of 0.47 s and a decay time of 0.37 s; under -7 V bias, the device achieves a responsivity of 16.96 mA/W with a rise time of 0.17 s and a decay time of 0.33 s. The spectral response characteristics of the device show that it has a selective response to solar-blind ultraviolet light (cutoff wavelength is 280 nm) with a rejection ratio (R254 nm/R310 nm), which is greater by more than two orders of magnitude. This work provides a good reference for adjusting the band gap of Ga2O3-based films and broadening their application fields.

Details

ISSN :
19448252 and 19448244
Volume :
13
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi...........395447596a649ccf665052f30652773f
Full Text :
https://doi.org/10.1021/acsami.1c13006