Back to Search Start Over

Perception-oriented video saliency detection via spatio-temporal attention analysis

Authors :
Yang Liu
To-Yee Ng
Yan Liu
Sheng-hua Zhong
Source :
Neurocomputing. 207:178-188
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. Computational visual saliency detection model provides important information for semantic understanding in many real world applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended regions for both interesting objects and dominant motions in video sequences. Based on the visual orientation inhomogeneity of human perception, a novel spatial saliency detection technique called visual orientation inhomogeneous saliency model is proposed. In temporal saliency detection, a novel optical flow model is created based on the dynamic consistency of motion. We fused the spatial and the temporal saliency maps together to build the spatio-temporal attention analysis model toward a uniform framework. The proposed model is evaluated on three typical video datasets with six visual saliency detection algorithms and achieves remarkable performance. Empirical validations demonstrate the salient regions detected by the proposed model highlight the dominant and interesting objects effectively and efficiently. More importantly, the saliency regions detected by the proposed model are consistent with human subjective eye tracking data.

Details

ISSN :
09252312
Volume :
207
Database :
OpenAIRE
Journal :
Neurocomputing
Accession number :
edsair.doi...........3975bcf4911bc4f6b6789403c45cb22f
Full Text :
https://doi.org/10.1016/j.neucom.2016.04.048