Back to Search Start Over

Buried Power Rail Integration With FinFETs for Ultimate CMOS Scaling

Authors :
S. Paolillo
Guillaume Boccardi
N. Jourdan
Manoj Jaysankar
Zheng Tao
Sylvain Baudot
Geert Mannaert
Juergen Boemmels
T. Hopf
E. Capogreco
Shouhua Wang
Efrain Altamirano
E. Dupuy
Olalla Varela Pedreira
B. Briggs
Thomas Chiarella
Joris Cousserier
Sofie Mertens
Romain Ritzenthaler
Frank Holsteyns
C. Lorant
Goutham Arutchelvan
Ingrid Demonie
Steven Demuynck
K. Kenis
Xiuju Zhou
Anshul Gupta
F. Sebai
D. Radisic
Zsolt Tokei
Erik Rosseel
A. Sepulveda
Naoto Horiguchi
Christel Drijbooms
Antony Premkumar Peter
Haroen Debruyn
Nouredine Rassoul
Bilal Chehab
P. Morin
Boon Teik Chan
Christopher J. Wilson
Katia Devriendt
Noemie Bontemps
Frederic Lazzarino
Paola Favia
Lieve Teugels
D. Yakimets
F. Schleicher
Houman Zahedmanesh
Jerome Mitard
Min-Soo Kim
An De Keersgieter
Sujith Subramanian
Kevin Vandersmissen
Hans Mertens
Eugenio Dentoni Litta
Yong Kong Siew
Source :
IEEE Transactions on Electron Devices. 67:5349-5354
Publication Year :
2020
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2020.

Abstract

Buried power rail (BPR) is a key scaling booster for CMOS extension beyond the 5-nm node. This work demonstrates, for the first time, the integration of tungsten (W) BPR lines with Si finFETs. BPR technology requires insertion of metal in the front-end-of-line (FEOL) stack. This poses risks of stack deformation and device degradation due to metal-induced stress and contamination. To assess the stack deformation, we demonstrate W-BPR lines which can withstand source/drain activation anneal at 1000 °C, 1.5 s, without adversely impacting the stack morphology. To address the contamination risk, we demonstrate a BPR process module with controlled W recess and void-free dielectric plug formation which keeps the W-line fully encapsulated during downstream FEOL processing. Suitable choice of BPR metal such as W with high melting point which does not diffuse into dielectrics also minimizes the risk of contamination. To assess the device degradation, simulations are carried out showing negligible stress transfer from BPR to the channel. This is experimentally validated when no systematic difference in the dc characteristics of CMOS without BPR versus those in close proximity to floating W-BPR lines is observed. Additionally, the resistance of the recessed W-BPR line is measured $\sim 120~\Omega /\mu \text{m}$ for critical dimension (CD) ~32 nm and height ~122 nm. The recessed W-BPR interface with Ru 3-nm TiN liner via contact can withstand more than 1000 h of electromigration (EM) stress at 6.6 MA/cm2 and 330 °C, making Ru a candidate for via metallization to achieve low resistance contact strategy to BPR.

Details

ISSN :
15579646 and 00189383
Volume :
67
Database :
OpenAIRE
Journal :
IEEE Transactions on Electron Devices
Accession number :
edsair.doi...........39c090ddf1ac756f7a1d162529a99308