Back to Search
Start Over
Two-stage Model for Automatic Playlist Continuation at Scale
- Source :
- RecSys Challenge
- Publication Year :
- 2018
- Publisher :
- ACM, 2018.
-
Abstract
- Automatic playlist continuation is a prominent problem in music recommendation. Significant portion of music consumption is now done online through playlists and playlist-like online radio stations. Manually compiling playlists for consumers is a highly time consuming task that is difficult to do at scale given the diversity of tastes and the large amount of musical content available. Consequently, automated playlist continuation has received increasing attention recently [1, 7, 11]. The 2018 ACM RecSys Challenge [14] is dedicated to evaluating and advancing current state-of-the-art in automated playlist continuation using a large scale dataset released by Spotify. In this paper we present our approach to this challenge. We use a two-stage model where the first stage is optimized for fast retrieval, and the second stage re-ranks retrieved candidates maximizing the accuracy at the top of the recommended list. Our team vl6 achieved 1'st place in both main and creative tracks out of over 100 teams.
- Subjects :
- Information retrieval
InformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.,HCI)
Computer science
020207 software engineering
02 engineering and technology
Recommender system
Scale (music)
Convolutional neural network
Task (project management)
Continuation
020204 information systems
0202 electrical engineering, electronic engineering, information engineering
Collaborative filtering
Gradient boosting
Stage (hydrology)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Proceedings of the ACM Recommender Systems Challenge 2018
- Accession number :
- edsair.doi...........39c975688939b0bae4cfc9342f8916fa
- Full Text :
- https://doi.org/10.1145/3267471.3267480