Back to Search
Start Over
Hybrid machine learning/physics-based approach for predicting oxide glass-forming ability
- Source :
- Acta Materialia. 222:117432
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- Predicting the liquid compositions that will vitrify at experimentally accessible quench rates remains one of the grand challenges in the field of condensed matter physics. This glass-forming ability can be quantified as the critical quench rate needed to suppress crystallization. Knowledge of this critical quench rate also informs which glass composition could be used for new applications. There have been several physical and empirical models presented in the literature to predict the critical quench rate/glass forming ability. These models range from those theoretically derived to those quantified only through experimental characterization. In this work, we instead propose a new method to calculate the critical quench rate using the recently developed toy landscape model combined with machine learning. The toy landscape model accesses the underlying physics that control the vitrification behavior by directly simulating the liquid thermodynamics and kinetics. The results are discussed in terms of industrial impact, physical insights, and how the glass science community can develop improved predictions of glass-forming ability.
- Subjects :
- Work (thermodynamics)
Materials science
Polymers and Plastics
Field (physics)
Metals and Alloys
Empirical modelling
Oxide
Glass forming
Electronic, Optical and Magnetic Materials
Characterization (materials science)
Condensed Matter::Soft Condensed Matter
Range (mathematics)
chemistry.chemical_compound
chemistry
Ceramics and Composites
Vitrification
Statistical physics
Subjects
Details
- ISSN :
- 13596454
- Volume :
- 222
- Database :
- OpenAIRE
- Journal :
- Acta Materialia
- Accession number :
- edsair.doi...........3a23cb0b3771224820b5338160b780c5
- Full Text :
- https://doi.org/10.1016/j.actamat.2021.117432