Back to Search
Start Over
Ab Initio Conformational Space Study of Model Compounds of O-Glycosides of Serine Diamide
- Source :
- Chemistry - A European Journal. 8:4718-4733
- Publication Year :
- 2002
- Publisher :
- Wiley, 2002.
-
Abstract
- Relative stabilities of rotamers of the N-acetyl-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-L-seryl-N'-methyl amide (1) and eleven analogous molecules containing beta-galactose, alpha- and beta-mannose, alpha- and beta-glucose, and L-threonine were calculated to learn whether they could explain the natural preference for 1 in linkages between the carbohydrate and protein in glycoproteins. The lowest energy rotamers of four O-glycoside models of serine diamide were identified with a Monte Carlo search coupled with molecular mechanics (MM2*). These rotamers were further optimized with an ab initio level of theory (HF/6-31G(d)). Subsequently, B3LYP/6-31 + G(d) single point energies were calculated for the most stable HF structures. The most favorable interactions are present in 1 and its glucose analogue. The monosaccharide for the carbohydrate antenna is anchored to the serine residue with an AcNH...O=C-NHMe hydrogen bond in the most stable rotamers. The mannose analogue and the beta-anomers are considerably less stable according to the MM2* and especially to the ab inito energy values. The three analogues have HF/6-31 G(d) energies which are 4-6 kcal mol-1 higher; the single point B3LYP/6-31 + G(d)//HF/6-31 G(d) calculations yield preferences of 3-5 kcal mol-1 for 1. The most stable L-threonine analogues show a behaviour very similarly to the corresponding serine analogues. The ZPE and thermal correction components of the calculated delta H298 and delta G298 values are relatively small (< 0.4 kcal mol-1). However, the T delta S298 term can be as large as 2.6 kcal mol-1. The entropy terms stabilize the alpha-anomers relative to beta-anomers, and ManNAc relative to GalNAc. The largest stabilization effect is observed for one of the rotamers of the alpha-anomer of ManNAc.
Details
- ISSN :
- 15213765 and 09476539
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Chemistry - A European Journal
- Accession number :
- edsair.doi...........3acbb8266a82fb23d026511772ac709c
- Full Text :
- https://doi.org/10.1002/1521-3765(20021018)8:20<4718::aid-chem4718>3.0.co;2-s