Back to Search
Start Over
Abstract 4524: Comparison of PDX, PDC, and PDOrg models from the National Cancer Institute’s Patient-Derived Models Repository (PDMR)
- Source :
- Cancer Research. 79:4524-4524
- Publication Year :
- 2019
- Publisher :
- American Association for Cancer Research (AACR), 2019.
-
Abstract
- The National Cancer Institute (NCI) has developed a Patient-Derived Models Repository (PDMR) comprised of quality-controlled, early-passage, clinically-annotated patient-derived tumor xenografts (PDXs), in vitro tumor cell cultures (PDCs), cancer associated fibroblasts (CAFs), and patient-derived organoids (PDOrg). NCI has focused on generating models to complement existing PDX collections and address unmet needs in the preclinical model space. These models are offered to the extramural community for research use (https://pdmr.cancer.gov), along with clinical annotation and molecular information (whole exome sequence, gene expression using RNASeq), via a publicly accessible database. Currently, over 200 PDX models, 50 PDC models, and 100 CAF models are available for distribution to the US research community. Approximately 50 PDOrg models will be released in early 2019. As part of its rare cancer initiative, the NCI is also targeting the collection of infrequently-observed tumor histologies to advance both biological investigations and drug development efforts for under-studied malignancies. Comparison of matched models, models where more than one model type are available (e.g., PDX and PDC), demonstrate a high degree of concordance across the model types. Genetic stability across the models is assessed using multiple criteria including genetic assessment of CNVs and presence of driver mutations. Optimal CNV assessment uses whole exome sequence data corrected for cellularity in the patient specimen using germline reads and corrected for cellularity in the PDX specimens by subtraction of the mouse reads. Histomorphologic comparison of PDXs and cell line xenografts (CLX) generated from in vitro PDCs and PDOrgs also overall show a high degree of concordance, though loss of features and dedifferentiation can be observed in some models. Overall these models demonstrate a high degree of conservation at the genetic and pathologic level when compared to the patient tumor. These models can provide researchers the ability to perform high- or mid-throughput screening in 2D or 3D culture followed by targeted selection of PDX models for in vivo studies. Funded by NCI Contract No. HHSN261200800001E Citation Format: Yvonne A. Evrard, Dianne Newton, Biswajit Das, Sergio Y. Alcoser, Kaitlyn Arthur, Mariah Baldwin, Carrie Bonomi, Suzanne Borgel, John Carter, Tiffany Chase, Alice Chen, Lily Chen, Nikki E. Craig, Vivekananda Datta, Emily Delaney, Raymond Divelbiss, Kelly Dougherty, Thomas Forbes, Kyle Georgius, Joe Geraghty, Marion Gibson, Michelle M. Gottholm-Ahalt, Tara Grinnage-Pulley, Kelly Hedger, Sierra Hoffman, Chris Karlovich, Wiem Lassoued, Shahanawaz Jiwani, Candace Mallow, Chelsea McGlynn, Mallorie Morris, Jenna Moyer, Mike Mullendore, Matt Murphy, Rajesh Patidar, Kevin Plater, Marianne Radzyminski, Nicki Scott, Luke H. Stockwin, Howard Stotler, Jesse Stottlemyer, Savanna Styers, Debbie Trail, Tomas Vilimas, Anna Wade, Abigail Walke, Thomas Walsh, P. Mickey Williams, Melinda G. Hollingshead, James H. Doroshow. Comparison of PDX, PDC, and PDOrg models from the National Cancer Institute’s Patient-Derived Models Repository (PDMR) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 4524.
Details
- ISSN :
- 15387445 and 00085472
- Volume :
- 79
- Database :
- OpenAIRE
- Journal :
- Cancer Research
- Accession number :
- edsair.doi...........3d223bfc66aa20787b6d643f9546b2e9
- Full Text :
- https://doi.org/10.1158/1538-7445.am2019-4524