Back to Search Start Over

Are we missing something when evaluating adsorbents for CO2 capture at the system level?

Authors :
Ahmed Alhajaj
Lourdes F. Vega
Hammed A. Balogun
Saeed AlMenhali
Daniel Bahamon
Source :
Energy & Environmental Science. 14:6360-6380
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Adsorption of CO2 with porous solid materials is gaining attention as a promising CO2 capture technology due to the potential improvement in energy efficiency and cost reductions. This study investigates for the first time the potential performance of the MOFs Cu-BTC, Mg-MOF-74, and UTSA-16 for CO2 capture at a commercial large-scale using multiscale modeling; in addition, a selected activated carbon was included for comparative purposes, and zeolite 13X was used as the benchmark. We have developed a multiscale model that integrates molecular simulation results with a process model of a pressure/vacuum swing adsorption (P/VSA) process. The model was first validated at the pilot scale and then used to assess the performance of the above-mentioned adsorbents and processes attached to a 550 MW coal plant, in order to achieve the 90% recovery and 95% purity targets of the US Department of Energy. The optimal design, scheduling and operating conditions of these adsorbents were obtained while minimizing total cost and improving the non-monetized key performance indicators (KPIs) such as productivity, selectivity, working capacity, energy consumption and the modified adsorption figure of merit (AFM) obtained in global sensitivity analyses. A key finding from this study is that the recently proposed UTSA-16 MOF can be as good as the traditional zeolite 13X for industrial-scale post-combustion capture and compression, at a cost of

Details

ISSN :
17545706 and 17545692
Volume :
14
Database :
OpenAIRE
Journal :
Energy & Environmental Science
Accession number :
edsair.doi...........3e6e64b1ffc584ad435fd8e9bd9ee98d
Full Text :
https://doi.org/10.1039/d1ee01677f