Back to Search
Start Over
The unit of the total décalage adjunction
- Source :
- Journal of Homotopy and Related Structures. 15:333-349
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- We consider the decalage construction $${{\,\mathrm{Dec}\,}}$$ and its right adjoint $$T$$. These functors are induced on the category of simplicial objects valued in any bicomplete category $${\mathcal {C}}$$ by the ordinal sum. We identify $$T{{\,\mathrm{Dec}\,}}X$$ with the path object $$X^{\Delta [1]}$$ for any simplicial object X. We then use this formula to produce an explicit retracting homotopy for the unit $$X\rightarrow T{{\,\mathrm{Dec}\,}}X$$ of the adjunction $$({{\,\mathrm{Dec}\,}},T)$$. When $${\mathcal {C}}$$ is a category of objects of an algebraic nature, we then show that the unit is a weak equivalence of simplicial objects in $${\mathcal {C}}$$.
- Subjects :
- Path (topology)
Algebra and Number Theory
Functor
Functional analysis
Homotopy
010102 general mathematics
Algebraic topology
Mathematics::Algebraic Topology
01 natural sciences
Weak equivalence
Combinatorics
Number theory
Mathematics::Category Theory
0103 physical sciences
010307 mathematical physics
Geometry and Topology
0101 mathematics
Unit (ring theory)
Mathematics
Subjects
Details
- ISSN :
- 15122891 and 21938407
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- Journal of Homotopy and Related Structures
- Accession number :
- edsair.doi...........3f75a23a19a67fd4f404b4822d8708e3
- Full Text :
- https://doi.org/10.1007/s40062-020-00257-1