Back to Search Start Over

Predictive modelling of JET optimized shear discharges

Authors :
G. T. A. Huysmans
V.V. Parail
E Springmann
C. Gormezano
D.J. Ward
F. X. Söldner
G.A. Cottrell
A. Taroni
C. D. Challis
B. Fischer
Y. Baranov
A.C.C. Sips
X. Litaudon
Source :
Nuclear Fusion. 39:429-437
Publication Year :
1999
Publisher :
IOP Publishing, 1999.

Abstract

Transport analysis of high performance JET plasmas with optimized magnetic shear (OMS) has revealed many interesting features which cannot be explained by the existing JET empirical transport model (Erba, M., et al., Plasma Phys. Control. Fusion 39 (1997) 261). TRANSP analysis shows that transport coefficients in OMS plasmas are often reduced in the plasma core (Cottrell, G.A., et al., in Controlled Fusion and Plasma Physics (Proc. 24th Eur. Conf. Berchtesgaden, 1997), Vol. 21A, Part I, European Physical Society, Geneva (1997) 81) to the level of ion neoclassical transport. TRANSP analysis and predictive modelling with JETTO show that this region of improved confinement appears near the plasma centre and then expands outwards in a way which does not follow either the evolution of the region with the negative magnetic shear or the propagation of the region with a large shear in plasma rotation. The best agreement with experiment has been achieved by using a transport model which combines the effect of a long wavelength decoupling due to small magnetic shear with its suppression by strong rotational shear. Predictive modelling of some of the characteristic JET OMS plasmas gives quite good agreement between such a model and the experimental data.

Details

ISSN :
00295515
Volume :
39
Database :
OpenAIRE
Journal :
Nuclear Fusion
Accession number :
edsair.doi...........3fc02a731e0d43a39d5649b3abceb0e4
Full Text :
https://doi.org/10.1088/0029-5515/39/3/310