Back to Search Start Over

An excitation wavelength switching to enhance dual-color wide-field temporal-focusing multiphoton excitation fluorescence imaging

Authors :
Chi Hsiang Lien
Jing Han Ke
Yu Min Cheng
Fan Ching Chien
Source :
Journal of Physics D: Applied Physics. 53:235401
Publication Year :
2020
Publisher :
IOP Publishing, 2020.

Abstract

Dual-color two-photon excitation (TPE)-fluorescence imaging is used in conventional TFMPEM to observe specimens with different fluorophore labels. However, concerns have been raised about the excitation efficiency and selectivity of the fluorophores under fixed-wavelength excitation. This study presents a wavelength-switching approach using a scanning mirror, beam expander, and diffraction grating in the TFMPEM to switch the excitation wavelengths and match the optimal absorption of the fluorophores to acquire dynamic dual-color TPE-fluorescence images. The presented TFMPEM system was demonstrated to have an axial excitation confinement of 2.3–5.0 μm for excitation wavelengths of 730–1000 nm, and was used to visualize three-dimensional images of the vasculature of a mouse brain. The TPE efficiencies of different fluorophores were evaluated through TFMPEM imaging with excitation wavelength scanning to obtain their TPE spectra. Consequently, time-lapsed dual-color TFMPEM imaging was performed on rhodamine 6G (R6G)–poly(lactic-co-glycolic acid) (PLGA) nanoparticles and enhanced-yellow-fluorescent protein (EYFP)-tagged clathrin using excitation wavelengths at the maximum TPEs of R6G and EYFP, respectively. Our results revealed the PLGA-nanoparticle uptake of live cells via long-lived clathrin-coated plaques in clathrin-mediated endocytosis.

Details

ISSN :
13616463 and 00223727
Volume :
53
Database :
OpenAIRE
Journal :
Journal of Physics D: Applied Physics
Accession number :
edsair.doi...........4076d74112f6fdcc82361151785aa6e8
Full Text :
https://doi.org/10.1088/1361-6463/ab7acc