Back to Search
Start Over
Multidecadal variability of the North Brazil Current and its connection to the Atlantic meridional overturning circulation
- Source :
- Journal of Geophysical Research. 116
- Publication Year :
- 2011
- Publisher :
- American Geophysical Union (AGU), 2011.
-
Abstract
- [1] The North Brazil Current (NBC) connects the North and South Atlantic and is the major pathway for the surface return flow of the Atlantic meridional overturning circulation (AMOC). Here, we calculate the NBC geostrophic transport time series based on 5 decades of observations near the western boundary off the coast of Brazil. Results reveal a multidecadal NBC variability that lags Labrador Sea deep convection by a few years. The NBC transport time series is coherent with the Atlantic Multidecadal Oscillation in sea surface temperature, which also has been widely linked to AMOC fluctuations in previous modeling studies. Our results thus suggest that the observed multidecadal NBC transport variability is a useful indicator for AMOC variations. The suggested connection between the NBC and AMOC is assessed in a 700 year control simulation of the Geophysical Fluid Dynamics Laboratory's CM2.1 coupled climate model. The model results are in agreement with observations and further demonstrate that the variability of NBC transport is a good index for tracking AMOC variations. Concerning the debate about whether a slowdown of AMOC has already occurred under global warming, the observed NBC transport time series suggests strong multidecadal variability but no significant trend.
- Subjects :
- Atmospheric Science
Ecology
Global warming
Paleontology
Soil Science
Forestry
Aquatic Science
Tropical Atlantic
Oceanography
Current (stream)
Sea surface temperature
Geophysics
Geophysical fluid dynamics
Space and Planetary Science
Geochemistry and Petrology
Climatology
Atlantic multidecadal oscillation
Earth and Planetary Sciences (miscellaneous)
Climate model
Geology
Geostrophic wind
Earth-Surface Processes
Water Science and Technology
Subjects
Details
- ISSN :
- 01480227
- Volume :
- 116
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research
- Accession number :
- edsair.doi...........415775189f743e728e51c4ae877872ca