Back to Search Start Over

Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance

Authors :
Qian Xu
Wenyu Wang
Xinyan Leng
Li-Ming Yang
Yuen Wu
Xiaolin Wang
Wenxing Chen
Mengzhao Zhu
Zhengkun Yang
Source :
Nano Research. 14:4512-4519
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

Details

ISSN :
19980000 and 19980124
Volume :
14
Database :
OpenAIRE
Journal :
Nano Research
Accession number :
edsair.doi...........432d2c064185269142102cb6e656bada
Full Text :
https://doi.org/10.1007/s12274-021-3823-z