Back to Search
Start Over
Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance
- Source :
- Nano Research. 14:4512-4519
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.
- Subjects :
- Materials science
Carbonization
chemistry.chemical_element
Carbon nanotube
Condensed Matter Physics
Atomic and Molecular Physics, and Optics
Oxygen reduction
law.invention
Catalysis
chemistry
Chemical engineering
law
Phase (matter)
Fuel cells
General Materials Science
Carbon substrate
Electrical and Electronic Engineering
Carbon
Subjects
Details
- ISSN :
- 19980000 and 19980124
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Nano Research
- Accession number :
- edsair.doi...........432d2c064185269142102cb6e656bada