Back to Search
Start Over
Dual pH- and Glutathione-Responsive CO2-Generating Nanodrug Delivery System for Contrast-Enhanced Ultrasonography and Therapy of Prostate Cancer
- Source :
- ACS Applied Materials & Interfaces. 13:12899-12911
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- Ultrasonography (US) contrast imaging using US contrast agents has been widely applied for the diagnosis and differential diagnosis of tumors. Commercial US contrast agents have limited applications because of their large size and shorter imaging time. At the same time, the desired therapeutic purpose cannot be achieved by applying only conventional US contrast agents. The development of nanoscale US agents with US imaging and therapeutic functions has attracted increasing attention. In this study, we successfully developed DOX-loaded poly-1,6-hexanedithiol-sodium bicarbonate nanoparticles (DOX@HADT-SS-NaHCO3 NPs) with pH-responsive NaHCO3 and GSH-responsive disulfide linkages. DOX@HADT-SS-NaHCO3 NPs underwent acid-triggered decomposition of NaHCO3 to generate CO2 bubbles and a reduction of disulfide linkages to further promote the release of CO2 and DOX. The potential of DOX@HADT-SS-NaHCO3 NPs for contrast-enhanced US imaging and therapy of prostate cancer was thoroughly evaluated using in vitro agarose gel phantoms and a C4-2 tumor-bearing nude mice model. These polymeric NPs displayed significantly enhanced US contrast at acidic pH and antitumor efficacy. Therefore, the NaHCO3 and DOX-encapsulated polymeric NPs hold tremendous potential for effective US imaging and therapy of prostate cancer.
- Subjects :
- Materials science
business.industry
technology, industry, and agriculture
Disulfide bond
02 engineering and technology
Glutathione
010402 general chemistry
021001 nanoscience & nanotechnology
medicine.disease
Contrast imaging
01 natural sciences
0104 chemical sciences
Prostate cancer
chemistry.chemical_compound
chemistry
medicine
General Materials Science
Delivery system
Ultrasonography
0210 nano-technology
business
Large size
Biomedical engineering
Subjects
Details
- ISSN :
- 19448252 and 19448244
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- ACS Applied Materials & Interfaces
- Accession number :
- edsair.doi...........43bfe263f76ad442111d69270b03aff0
- Full Text :
- https://doi.org/10.1021/acsami.1c00077