Back to Search Start Over

Metal dimer sites in ZSM-5 zeolite for methane-to-methanol conversion from first-principles kinetic modelling: is the [Cu–O–Cu]2+motif relevant for Ni, Co, Fe, Ag, and Au?

Authors :
Anders Hellman
Per-Anders Carlsson
Adam Arvidsson
Vladimir P. Zhdanov
Henrik Grönbeck
Source :
Catalysis Science & Technology. 7:1470-1477
Publication Year :
2017
Publisher :
Royal Society of Chemistry (RSC), 2017.

Abstract

Direct methane-to-methanol conversion is a desired process whereby natural gas is transformed into an energy-rich liquid. It has been realised at ambient pressure and temperature in metal ion-exchanged zeolites, where especially copper-exchanged ZSM-5 has shown promising results. The nature of the active sites in these systems is, however, still under debate. The activity has been assigned to a [Cu-O-Cu]2+ motif. One remaining question is whether this motif is general and also active in other metal-exchanged zeolites. Herein, we use first-principles microkinetic modelling to analyse the methane-to-methanol reaction on the [Cu-O-Cu]2+ motif, for Cu and other metals. First, we identify the cluster model size needed to accurately describe the dimer motif. Starting from the [Cu-O-Cu]2+ site, the metal ions are then systematically substituted with Ni, Co, Fe, Ag and Au. The results show that activation of Ag and Au dimer sites with oxygen is endothermic and therefore unlikely, whereas for Cu, Ni, Co and Fe, the activation is possible under realistic conditions. According to the kinetic simulations, however, the dimer motif is a plausible candidate for the active site for Cu only. For Ni, Co and Fe, close-to-infinite reaction times or unreasonably high temperatures are required for sufficient methane conversion. As Ni-, Co- and Fe-exchanged ZSM-5 are known to convert methane to methanol, these results indicate that the Cu-based dimer motif is not an appropriate model system for these metals.

Details

ISSN :
20444761 and 20444753
Volume :
7
Database :
OpenAIRE
Journal :
Catalysis Science & Technology
Accession number :
edsair.doi...........43dbe37c39a1d626d09135dcb27f2080
Full Text :
https://doi.org/10.1039/c6cy02521h