Back to Search Start Over

A spatio-temporal probabilistic model of hazard- and crowd dynamics for evacuation planning in disasters

Authors :
Julie Dugdale
Jaziar Radianti
Jose J. Gonzalez
Ole-Christoffer Granmo
Morten Goodwin
Parvaneh Sarshar
Source :
Applied Intelligence. 42:3-23
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Managing the uncertainties that arise in disasters --- such as a ship or building fire --- can be extremely challenging. Previous work has typically focused either on modeling crowd behavior, hazard dynamics, or targeting fully known environments. However, when a disaster strikes, uncertainties about the nature, extent and further development of the hazard is the rule rather than the exception. Additionally, crowds and hazard dynamics are both intertwined and uncertain, making evacuation planning extremely difficult. To address this challenge, we propose a novel spatio-temporal probabilistic model that integrates crowd and hazard dynamics, using ship- and building fire as proof-of-concept scenarios. The model is realized as a dynamic Bayesian network (DBN), supporting distinct kinds of crowd evacuation behavior, being based on studies of physical fire models, crowd psychology models, and corresponding flow models. Simulation results demonstrate that the DBN model allows us to track and forecast the movement of people until they escape, as the hazard develops from time step to time step. Our scheme thus opens up for novel in situ threat mapping and evacuation planning under uncertainty, with applications to emergency response.

Details

ISSN :
15737497 and 0924669X
Volume :
42
Database :
OpenAIRE
Journal :
Applied Intelligence
Accession number :
edsair.doi...........45313d30584d5a239847468e85966aee
Full Text :
https://doi.org/10.1007/s10489-014-0583-4