Back to Search Start Over

Coupling between Deformation and Mass Transport in an Immiscible Alloy at High Shear Strains

Authors :
Madhusudhan R. Pallaka
Xiaolong Ma
Miao Song
Bharat Gwalani
Matthew J. Olszta
Jia Liu
Qin Pang
Suveen N. Mathaudhu
Joshua Silverstein
Cynthia Powell
Arun Devaraj
Peter V. Sushko
Source :
SSRN Electronic Journal.
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Forced mixing to a single phase or supersaturated solid solution (SSS) and its prerequisite microstructure evolution in immiscible systems has been a focus of research for both fundamental science and a variety of applications. Controlling the formation of SSS by shear deformation assisted processing could enable a material design beyond conventional equilibrium microstructure in immiscible systems. Here, a highly immiscible (mixing enthalpy of ~ 20 kJ·mol-1) Cu-50 at. % Cr binary alloy was employed to investigate the microstructure evolution and localized tendencies of SSS during severe shear deformation. The present results demonstrate distinctive defect mediated microstructure refinement process in each phase and how it leads to localized SSS as a function of shear strain. Preferential dynamic recrystallization occurs in the softer Cu phase due to strain localization, leading to substantial grain refinement. The refinement of Cr phase in the top-most layer, however, is enabled by the progressive evolution of grain lamination, splitting, and fragmentation as a function of shear strain. The eventual SSS is found to be strongly dependent on the local environments that affect the dislocation activity, including the level of microstructure refinement, the interfacial orientation relationship, hardness difference, and supposed stability of oxidation. Ab initio simulations confirm that it is more favorable to oxidize Cr than Cu at incoherent Cu/Cr interfaces which then limits the mass transport on an incoherent boundary. Our results shed light on the underpinning mechanism for non-equilibrium mass transport in immiscible systems upon severe deformation that can be applicable to a variety of processing techniques aimed at producing immiscible alloys with superior mechanical properties.

Details

ISSN :
15565068
Database :
OpenAIRE
Journal :
SSRN Electronic Journal
Accession number :
edsair.doi...........4741d121d725e0a82a827bbc3ca7d8f9
Full Text :
https://doi.org/10.2139/ssrn.3952389