Back to Search Start Over

Seismic design, modelling and assessment of self-centering steel frames using post-tensioned connections with web hourglass shape pins

Authors :
George Vasdravellis
Theodore L. Karavasilis
Athanasios I. Dimopoulos
Brian Uy
Source :
Bulletin of Earthquake Engineering. 11:1797-1816
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

A new self-centering steel post-tensioned connection using web hourglass shape pins (WHPs) has been recently developed and experimentally validated. The connection isolates inelastic deformations in WHPs, avoids damage in other connection parts as well as in beams and columns, and eliminates residual drifts. WHPs do not interfere with the composite slab and can be very easily replaced without bolting or welding, and so, the connection enables non-disruptive repair and rapid return to building occupancy in the aftermath of a strong earthquake. This paper presents a simplified nonlinear model for the connection and the associated beams and columns that consists of nonlinear beam-column elements, and hysteretic and contact zero-length spring elements appropriately placed in the beam-column interface. The model was calibrated against experimental results and found to accurately simulate the connection behaviour. A prototype building was selected and designed as a conventional steel moment-resisting frame (MRF) according to Eurocode 8 or as a self-centering steel MRF (SC-MRF) using the connection with WHPs. Seismic analyses results show that the conventional MRF and the SC-MRF have comparable peak storey drifts, and highlight the inherent potential of the SC-MRF to eliminate damage in beams and residual drifts. The paper also shows that repair of damage in the conventional MRF will be costly and disruptive after the design basis earthquake, and, not financially viable after the maximum considered earthquake due to large residual drifts

Details

ISSN :
15731456 and 1570761X
Volume :
11
Database :
OpenAIRE
Journal :
Bulletin of Earthquake Engineering
Accession number :
edsair.doi...........47521d69484221b968d41eebe6e3f544
Full Text :
https://doi.org/10.1007/s10518-013-9437-4