Back to Search Start Over

Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells

Authors :
Michael Holzinger
Alan Le Goff
Source :
Sustainable Energy & Fuels. 2:2555-2566
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

The fascinating topic of converting chemical energy into electric power using biological catalysts, called enzymes, and sustainable fuels motivates a large community of scientists to develop enzymatic fuel cells. Enzymes provide the advantage of catalytic oxidation and reduction processes under ecologically friendly conditions and even in complex media due to their unique specificity. However, this specificity represents a constant challenge since every enzyme has its own distinguished structure and catalytic behaviour. In this context, great efforts have been invested to understand the operational modes of promising enzymes for the bioconversion of energy. The aim is to provide chemical functions and functionalities to enable or to facilitate an electron transfer between the enzymes and the electrode material to reach the maximum efficiency of the electrocatalytic process. Original and high performance examples are summarized here in a non-exhaustive manner focusing on the wiring strategy for a series of enzymes described in the literature.

Details

ISSN :
23984902
Volume :
2
Database :
OpenAIRE
Journal :
Sustainable Energy & Fuels
Accession number :
edsair.doi...........483be20fddd712e9294ccba294a800c9
Full Text :
https://doi.org/10.1039/c8se00374b