Back to Search
Start Over
Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models
- Source :
- Biotechnology and Bioengineering. 113:2254-2263
- Publication Year :
- 2016
- Publisher :
- Wiley, 2016.
-
Abstract
- A thorough understanding of cell response to combined culture configuration and mechanical cues is of paramount importance in vascular tissue engineering applications. Herein, we investigated and compared the response of vascular smooth muscle cells (vSMCs) cultured in different culture environments (2D cell monolayers and 3D cellularized collagen-based gels) in combination with mechanical stimulation (7% uniaxial cyclic strain, 1 Hz) for 2 and 5 days. When cyclic strain was applied, two different responses, in terms of cell orientation and expression of contractile-phenotype proteins, were observed in 2D and 3D models. Specifically, in 2D configuration, cyclic strain caused ∼50% of cell population to align nearly perpendicular (80-90 degrees) to the strain direction, while not influencing the contractile-phenotype protein expression, as compared to the 2D static controls. Conversely, the application of uniaxial strain to 3D constructs induced a ∼60% cell alignment almost parallel (0-10 degrees) to the strain direction. Moreover, 3D mechanical stimulation applied for 5 days induced a twofold increase of SM α-actin level and a 14-fold increase of calponin expression as compared to 3D static controls. Altogether these findings provide a new insight into the potential to drive cell behavior by modulating the extracellular matrix and the biomechanical environment. Biotechnol. Bioeng. 2016;113: 2254-2263. © 2016 Wiley Periodicals, Inc.
- Subjects :
- 0301 basic medicine
Vascular smooth muscle
0206 medical engineering
Cell
Calponin
Population
Bioengineering
3d model
Stimulation
02 engineering and technology
Applied Microbiology and Biotechnology
Extracellular matrix
03 medical and health sciences
medicine
education
education.field_of_study
biology
Strain (chemistry)
Chemistry
Anatomy
020601 biomedical engineering
030104 developmental biology
medicine.anatomical_structure
biology.protein
Biophysics
Biotechnology
Subjects
Details
- ISSN :
- 00063592
- Volume :
- 113
- Database :
- OpenAIRE
- Journal :
- Biotechnology and Bioengineering
- Accession number :
- edsair.doi...........48d238eb874af245d53d4a0cadc69e9d
- Full Text :
- https://doi.org/10.1002/bit.25979