Sorry, I don't understand your search. ×
Back to Search Start Over

Impacts of Summer North Atlantic Sea Surface Temperature Anomalies on the East Asian Winter Monsoon Variability

Authors :
Z. F. Wang
Renguang Wu
Zhang Chen
Source :
Journal of Climate. 32:6513-6532
Publication Year :
2019
Publisher :
American Meteorological Society, 2019.

Abstract

The present study investigates the impacts of the North Atlantic sea surface temperature (SST) anomalies on the East Asian winter monsoon (EAWM) variability. It is found that the northern component of the EAWM variability is associated with a dipole pattern of preceding summer North Atlantic SST anomalies during 1979–2016. The processes linking preceding summer North Atlantic SST to EAWM include the North Atlantic air–sea interactions and atmospheric wave train triggered by the North Atlantic SST anomalies. Atmospheric wind anomalies in the preceding spring–summer result in the formation of a dipole SST anomaly pattern through surface heat flux changes. In turn, the induced SST anomalies provide a feedback on the atmosphere, modifying the location and intensity of anomalous winds over the North Atlantic. The associated surface heat flux anomalies switch the North Atlantic SST anomaly distribution from a dipole pattern in summer to a tripole pattern in the following winter. The North Atlantic tripole SST anomalies excite an atmospheric wave train extending from the North Atlantic through Eurasia to East Asia in winter, resulting in anomalous EAWM. However, the relationship of the northern component of EAWM to preceding summer North Atlantic SST anomalies is weak before the late 1970s. During 1956–76, due to weak air–sea interaction over the North Atlantic, no obvious tripole SST anomaly pattern is established in winter. The atmospheric wave train in winter is located at higher latitudes, leading to a weak connection between the northern component of EAWM and the preceding summer North Atlantic dipole SST anomaly pattern.

Details

ISSN :
15200442 and 08948755
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Climate
Accession number :
edsair.doi...........48f72ec5ad9a6123ca82fe4baab824ea