Back to Search Start Over

Brain endothelial STING1 activation by Plasmodium -sequestered heme promotes cerebral malaria via type I IFN response

Authors :
Teresa F. Pais
Hajrabibi Ali
Joana Moreira da Silva
Nádia Duarte
Rita Neres
Chintan Chhatbar
Rita C. Acúrcio
Rita C. Guedes
Maria Carolina Strano Moraes
Bruno Costa-Silva
Ulrich Kalinke
Carlos Penha-Gonçalves
Source :
Proceedings of the National Academy of Sciences. 119
Publication Year :
2022
Publisher :
Proceedings of the National Academy of Sciences, 2022.

Abstract

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnβ1 transcription in the brain of mice infected with Plasmodium berghei ANKA ( Pba ). This STING1/IFNβ-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood–brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN–driven brain inflammation was demonstrated in brain endothelial–specific IFNβ-reporter and STING1-deficient Pba -infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba -infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNβ in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNβ/CXCL10 axis crucial to CM pathogenesis and lethality.

Subjects

Subjects :
Multidisciplinary

Details

ISSN :
10916490 and 00278424
Volume :
119
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi...........4c5cfda1051cc2b643da9466cde0bbe2
Full Text :
https://doi.org/10.1073/pnas.2206327119