Back to Search Start Over

On energy conservation and the method of moments in scattering problems

Authors :
V. Galindo
N. Amitay
Source :
IEEE Transactions on Antennas and Propagation. 17:747-751
Publication Year :
1969
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 1969.

Abstract

Electromagnetic scattering problems, including waveguide discontinuity, phased array, and scattering (exterior type) problems, are frequently described by integral equations that can be solved by the Ritz-Galerkin or generalized method of moments. Under appropriate conditions, it has been shown that reciprocity and variational properties are, in fact, preserved in the approximate solutions. It is shown here that in the Ritz-Galerkin method, energy is also conserved under certain conditions, even in those scattering problems where reciprocity does not exist. Hence energy conservation cannot serve as a check for accuracy of a numerical solution obtained by the Ritz method or other related methods.

Details

ISSN :
00961973
Volume :
17
Database :
OpenAIRE
Journal :
IEEE Transactions on Antennas and Propagation
Accession number :
edsair.doi...........4c9060503050c3639f792b5b8df46f9e
Full Text :
https://doi.org/10.1109/tap.1969.1139549